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Abstract. Active Shape Models (ASMs) have proved successful in automatic segmentation
by using shape and appearance priors in a number of areas such as prostate segmentation, where
accurate contouring is important in treatment planning for prostate cancer. The ASM approach
however, is heavily reliant on a good initialisation for achieving high segmentation quality.
This initialisation often requires algorithms with high computational complexity, such as three
dimensional (3D) image registration. In this work, we present a fast, self-initialised ASM ap-
proach that simultaneously fits multiple objects hierarchically controlled by spatially weighted
shape learning. Prominent objects are targeted initially and spatial weights are progressively
adjusted so that the next (more difficult, less visible) object is simultaneously initialised using
a series of weighted shape models. The scheme was validated and compared to a multi-atlas
approach on 3D Magnetic Resonance (MR) images of 38 cancer patients and had the same
(mean, median, inter-rater) Dice’s similarity coefficients of (0.80, 0.81, 0.85), while having no
registration error and a computational time of 12-15 minutes, nearly an order of magnitude
faster than the multi-atlas approach.
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1. Introduction

Automatic segmentation of three dimensional (3D) Magnetic Resonance (MR) images has
become important because of its increasing use in treatment planning of prostate cancer due
to its dramatically improved soft-tissue contrast (Karlsson et al. 2009; Nyholm and Jonsson
2014). Manual contouring, especially from such high detail MR images, are time consuming
and prone to inter-rater variability. In our hospital, contouring these organs from MR images
requires approximately 3 hours per patient (most of this being the MR bone contouring).

Recently, Active Shape Models (ASMs) (Cootes et al. 1995) have proved successful in
automatically segmenting 3D MR images for a number of anatomical structures in humans
including the (individual) bones (Fripp et al. 2010; Schmid, Kim and Magnenat-Thalmann
2011; Xia et al. 2013; Chandra et al. 2014), muscles (Engstrom et al. 2011; HajGhanbari
et al. 2011), prostate (Martin, Troccaz and Daanen 2010; Chandra et al. 2012), liver (Heimann,
Wolf and Meinzer 2006) and the heart (Zheng et al. 2008; Ecabert et al. 2008). They have
even been utilised in the shape analysis of structures such as the hippocampus of the brain in
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Alzheimer’s disease (Shen et al. 2012) and inter-vertebral discs with degenerative-type changes
of the lumbar spine (Neubert et al. 2013).

An ASM consists of a triangulated surface S (having vertices vi with 0 6 i < N , where
N is the total number of vertices), a statistical shape model that encapsulates the object shape
information and a gray-level model to represent the object (gray-level intensity) appearance
in proximity to the object as one dimensional (1D) profiles per vertex of the surface. These
models are pre-computed offline from a set of training images that typically have the objects in
interest manually contoured. During the testing phase, the surface is then deformed to match
local object appearance similar to the gray-level model while only allowing the global shape
closest to that of the learned shape subspace. The reader is directed to a number of works that
describe this process in greater detail (Martin, Troccaz and Daanen 2010; Schmid, Kim and
Magnenat-Thalmann 2011; Chandra et al. 2012).

However, ASMs require a good initialisation to improve convergence and avoid being
caught in local minima. For example in prostate segmentation work, Martin, Troccaz and
Daanen (2010) utilised an ASM approach with spatial constraints that was initialised by a
single atlas, i.e. where a template image or atlas with a known segmentation and surface is
propagated to the test case using 3D image registration. After the success of using multiple
atlases in segmenting prostate MR images on their own (Klein et al. 2008), Chandra et al.
(2012) utilised multiple atlases to initialise their ASM and improved ASM convergence using
a selection of atlases with most similar appearance for the gray level profile template matching.
These initialisation methods, although very accurate, are themselves of high computational
complexity, requiring rigid and non-rigid registrations of a large number of detailed 3D images,
taking up a significant portion of the total computation time. A thorough review of prostate
segmentation work can be found in Ghose et al. (2012) or more recently in Litjens et al. (2014).

Limited work has been performed in self-initialising deformable models or multi-object
segmentation in MR imaging due to the challenges of the high dimensionality of the image
data. Most methods involve some pre-segmentation of the image either by landmarks (Smith,
Najarian and Ward 2009) or pixel classifications (Cosío 2008). Multi-object segmentation
methods have been developed for computerised tomography (CT) images (Yokota et al. 2009;
Glocker et al. 2012) or photography (Shotton et al. 2007). Although methods exist for MR
images, these tend to be either semi-automatic (Gao et al. 2012) or ideally suited to terrain-like
objects unless shape models are used initially (while having similar run times to multi-atlas
approaches) (Song et al. 2013). A promising approach are hierarchical deformable models,
where the segmentation is done at multiple stages, with each stage initialising the next. The
initialisation for most of these methods still utilise some form of registration (Okada et al.
2008) or sub-sampling/grouping (Shang, Su and Dössel 2006; Ma et al. 2010).

In this work, we present a self-initialised multi-object ASM approach that segments the
target object in a hierarchical manner using weighted shape learning. This shape weighted
hierarchical approach progressively initialises the subsequent (more difficult to segment) object
by segmenting a more discernible object first, such as larger objects that possess clearer and
more contrasting appearance like the bone, and exploiting any connectedness between these
objects to segment subsequent objects. The approach is free of image registrations and is of
low computational complexity compared to the 3D images involved. as it optimises a two
dimensional (2D) surface embedded into 3D space using the image volume sampled along
1D profiles. In this way, the proposed method propagates towards the target object without
needing any other forms of initialisation. This hierarchical targeting is achieved by adjusting
the global accuracy of the individual object segmentations via (continuous) spatial weights in
the shape model, allowing particular objects to be segmented accurately, while the next (more
difficult, less clearly visible) object is simultaneously initialised for the next step. When these
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steps are pipelined together, the segmentation approach achieves a robust initialisation and fast
segmentation convergence of the ultimate object of interest.

The proposed method is validated by segmenting the pelvic structures (body outline, bone,
bladder, rectum and prostate) with the eventual goal to segment the prostate accurately in 3D
MR images. The proposed method is shown to be nearly an order of magnitude faster, while
having similar accuracy, than the multi-atlas approach. In the next section, we present the
proposed multi-object approach and subsequent sections outline the results and discuss these
results.

2. Method

The objective of our work is to use a single combined deformable model, also referred to
as a ASM (Cootes et al. 1995), for multi-object segmentation with spatially weighted shape
learning. A series of weighted shape models are used to hierarchically activate/deactivate
objects, as well as partially fit/initialise and adjust their corresponding segmentation accuracies
via the spatially weighted Principal Component Analysis (PCA) (Thomaz et al. 2010). This
weighted hierarchical model encapsulates the inter-shape relationships in between the multiple
objects within the dataset. Each of the above aspects, as well as the segmentation pipeline will
be described in subsections that follow.

2.1. Training Surfaces

To segment each newly acquired case using deformable models, we require a shape model
trained offline from manual segmentations. For each of the M objects to be segmented in
new scans, we assume that there are s training cases (each having the M objects in the
same patient space) manually segmented by an expert to be used for training our algorithm.
For example in our case, 38 patients (so that s = 38) receiving external beam radiation
therapy (EBRT) at the Calvary Mater Newcastle Hospital, Australia had their body outline,
bone, bladder, rectum and prostate (so that M = 5) manually segmented from their T2 3D MR
images (Dowling et al. 2015). The set of s training surfaces per object can then be created
from these manual segmentations by any one of the well established shape correspondence
methods such as the shape-image technique (Davies, Twining and Taylor 2008), a surface
registration method (Hufnagel et al. 2008), particle-based systems (Datar et al. 2011) or
minimum descriptor lengths (Davies et al. 2010).

In this work, we use the correspondence approach also presented by (Chandra et al. 2014)
(appendix in their work) to obtain the training surfaces. To do this, a template surface for each
object was initially obtained via marching cubes (Lorensen and Cline 1987) from a single case.
It was then smoothed (Taubin, Zhang and Golub 1996) and decimated (Garland and Heckbert
1997) to reduce the number of vertices and hence the computational complexity. To better
account for the field of view (FOV) differences (of the superior and inferior areas) in the body
outline and bone, an average atlas was created from the labels instead and a surface created
in a similar manner to the other organs from the labelled atlas for these two objects. Figure 1
shows the resulting surfaces, their FOV and sampling.

The template surfaces are then fit to each of the s manual segmentation labelled images
using the surface to image correspondence approach to obtain training surfaces for each object.
This results in a series of s surfaces for each object that is essentially a non-rigidly deformed
template surface and thus has point-to-point correspondence between surfaces of the same
object. The point-to-point correspondence is important to ensure similar vertices across the
population of s cases represent the same part of the anatomy of each object. The template
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Figure 1. The template surfaces, their sampling and resulting PCA-based shape modelling
(showing the primary mode of variation) obtained from the shape creation pipeline by Chandra
et al. 2014 for each object in this study. Body outline is kept separate to allow easy visualisation
of the other (internal) organs.

surface that was selected initially to generate the model was then replaced by the resulting
mean shape from these surfaces and the surface to image registration approach re-run to obtain
the final training surfaces. The result is s cases, their MR image with M object surfaces
accurately represented within them ready for shape modelling.

2.2. Spatially Weighted Learning

Once each of the s cases have all object surfaces accurately represented, the surfaces
representing each object (and the template surfaces) are combined into a single surface for each
case. Figure 1 shows the template surfaces, point sampling and standard PCA-based shape
models (described shortly) used in this work. The next step is to weight each object depending
on the segmentation stage using the spatially weighted PCA.

The PCA (Pearson 1901) provides an eigen-decomposition of a rectangular (3N × s)
data matrixX = xj , where 0 6 j < s with x being the (3D) position vector of each surface
vertex. The decomposition is usually computed via the singular value decomposition (SVD)
of the covariance matrix C = (1/s)X ′TX ′, where µ is the mean shape and X ′ ← X − µ,
i.e. each column of X ′ consists of the variation of the points from the mean. The eigen-
decomposition produces a dimensionality reduction in the form of a set of eigenvectors
U = [u1, . . . ,uN ] = ui and eigenvalues λi that effectively represent the major modes, which
model the global shape variation of the surfaces.

The spatial weighted PCA effectively provides regions of interest (ROI) shape modelling
of the surfaces by essentially pre-multiplying the rows of X ′, i.e. the positional variations,
with weights

wi =
[√
w1,
√
w2, . . . ,

√
wN

]
, (1)
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Figure 2. The segmentation weighting and parameters used in this work, where profile length
x = 12, u is the profile spacing, P is the shape model precision, i is the number of iterations
and c is the capture range of the deformable model. Each stage and its corresponding weights
are shown as a unique colour (see online version for colours). The overlapping spatial weights
at 1.0 and 0.6 (see matching colour bars), which effectively a weighted version of the models in
figure 1. This simultaneously fits the current object accurately in the pipeline (with a weight
of 1.0), while initialising the next object (with a weight of 0.6). The other objects (shown
with absent colour bars) are “disabled” by using a value close to (but not equal) to zero (such
as 1 × 10−6). This shortens the overall pipeline than it would be with other unweighted
(hierarchical) methods. The weights are implemented as spatial weights using the spatially
weighted PCA (Thomaz et al. 2010). Note that the objects in the figure are not to scale.

directly before the eigen-decomposition. This manipulates the variations from the mean shape,
thus also the global shape representation energy of the model, to those that are highly weighted.
The points for which the shape variations are down-weighted have their variations revert to
the mean shape as the weights approach zero and are effectively ignored. By setting these
weights, either manually or automatically via an algorithm, we can focus the accuracy of the
shape model to certain spatial areas deemed more important to the problem. To construct the
multi-object approach, we must engineer a series of pipelined weights for segmenting and
initialising objects.

2.3. Segmentation Scheme

The main purpose of the proposed segmentation scheme is to use spatial weights in order to
adjust the segmentation accuracy of an ASM approach to facilitate a weighted hierarchical
scheme for self-initialised multi-object segmentation.

Assuming that there are spatial relationships between the position of the multiple objects
in question, a series of weights are produced to partially fit more difficult objects, while
segmenting more easily discernible objects first. In our case, the body outline is the most
easily distinguishable object in MR images, and since the bones are present within the body
with relative positions that can be learned using training data, we can fit the body outline
and partially fit the bones. A similar argument is true for the bladder with respect to the
bones. Once we have accurately segmented the body and suitably initialised the bone via a
simultaneous partial fit, we can then fit the bones and partially fit the bladder. This process is
repeated for the bladder and rectum and finally the rectum and prostate.

The choice of weights for the hierarchical pipeline can be found empirically or by
automatic tuning processes, however a weight of 1.0 for fully fitting an object and 0.5-0.75
for partially fitting the subsequent object seems to suffice in the cases explored by the authors.
Incorporating this weighting type into the segmentation scheme, one gets a pipeline that looks
like figure 2. The overlapping of the spatial weights ensures that the target object, here a
prostate, is reached with as few iterations as possible, decreasing the overall processing time.
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After the weights have been decided, the spatially weighted PCA is used to create a
weighted shape model for each stage (the blocks or steps in figure 2). The remaining aspects of
the segmentation method hierarchically utilises spatial weights as highlighted above resulting
in a computationally efficient segmentation pipeline using template matching along 1D profiles.

2.4. Template Matching

Deformable models when applied to imaging data involving organs such as the prostate
traditionally utilise a gray level modelling approach similar to that of Martin, Troccaz and
Daanen 2010 or Chandra et al. 2012 due to a lack of strong edges. The gray level model
essentially consists of 1D profiles of x elements extracted along each vertex of the s training
surfaces (that accurately represent the manually segmented cases) thereby approximately
encapsulating the surrounding appearance of the organ. Thus, each of the N vertices of the
deformable model have s training profiles pj .

During the fit procedure of the deformable model, new profiles qi of length cx are
extracted from the case to be segmented and template matched to the training profiles pj
for each vertex, where c > 1 and is effectively a capture range. The template matching is
done using normalised cross-correlation (NCC) and the position of the vertices of the surface
adjusted to where there is greatest correlation γ defined as

γ =
pj · qi

‖ pj ‖ ‖ qi ‖
, (2)

where 0 6 γ 6 1, so that negative correlations are ignored, ‖ ‖ is the magnitude and ·
represents the dot product. Once the vertices are deformed, the surface is smoothed (Taubin,
Zhang and Golub 1996) to account for neighbourhood deformations and the shape model
applied. The remaining parameters for the proposed weighted deformable model approach is
shown in figure 2.

To improve the computational performance of the template matching, we detect disabled
objects as those vertices with near zero weights via a threshold to ignore these points in the
matching. Having established all components of a multi-object weighted deformable model, it
was applied to a cohort of male subjects receiving treatment for prostate cancer.

2.5. Imaging Data

The imaging data utilised for this work was originally used for substitute CT generation for
MR imaging (alone) based EBRT planning (Dowling et al. 2015). A total of 38 patients (aged
between 58-78 years) all diagnosed with tumours had two MR sequences utilised in this work
acquired with a Siemens Skyra 3T scanner and positioned by two radiation therapists. The
planning MR was a 3D, T2 weighted 1.6 mm isotropic Sampling Perfection with Application
optimized Contrasts using different flip angle Evolution (SPACE) sequence with FOV to cover
the entire pelvis and bladder. The prostate delineation sequence was a 2D axial T2 weighted
sequence with FOV approximately 200x200 mm2 acquired in the same session. The parameters
for each of these scans are summarised in Dowling et al. 2015.

Three raters (two radiation oncologists and one radiation therapist) each segmented the
prostate on the (small FOV) T2 weighted MR image. All 38 patients had their body outline,
bone, bladder and rectum manually segmented from their large FOV T2 MR images. To ensure
a prostate model was also available for the large FOV segmentation, the small FOV prostate
manual segmentations were propagated to the large FOV images for each case. The prostate
contours of the most experienced expert was used for training and validation in this work. The
proposed deformable model segmentation approach was applied to the large FOV MR images
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first then to the small FOV MR images once the prostate was suitably initialised. Only the
prostate was segmented in the small FOV MR images using the a shape model built from the
contours of the most experienced rater.

The surfaces were deformed along vertex normals using template matching (see
section 2.4). To reduce computational complexity, the matching was done with a gray level
model trained using a hand selected subset of cases that had well behaved appearance and
shape characteristics. For the body and bones, the segmentation was also done at two image
resolutions using an image pyramid, while the remaining objects were segmented at full
resolution. The final prostate segmentation was obtained by also segmenting the second
smaller FOV T2 weighted MR image.

2.6. Validation

To validate the proposed multi-object weighted deformable model approach, the automated
segmentations A were validated against the manual segmentationsM of the 38 cases using
Dice’s similarity coefficient (DSC) (Dice 1945) as a measure of voxel overlap between the
segmentations defined as

DSC(A,M) =
2 |A ∩M|
|A|+ |M|

(3)

Since the voxel based validation is a global measure of segmentation accuracy, we also validate
our results using the mean absolute surface distance (MASD) that calculates the average
absolute Euclidean distance between A and M surfaces. The proposed method was then
compared to another two methods on the same dataset.

3. Results

Table 1. The DSC and surface distance errors between the proposed weighted multi-object
method, a standard unweighted deformable model approach and a multi-atlas method. The
t-tests show the statistical differences (if any) to the multi-atlas approach.

Method Body Bone Bladder Rectum Prostate Prostate Prostate Prostate
Median Median Median Median Median Median Median p-value

DSC DSC DSC DSC DSC MASD Hausdorff versus
(mm) (mm) Multi-Atlas

Weighted 0.94 0.81 0.87 0.79 0.81 2.08 9.6 0.44
Unweighted 0.94 0.81 0.83 0.66 0.70 3.20 12.9 1× 10−6

Multi-Atlas 1.00 0.92 0.86 0.85 0.82 2.04 13.3 -

The proposed multi-object weighted deformable model approach was compared using
DSC (Dice 1945) to the multi-atlas approach as reported by Dowling et al. 2015 on the same
dataset and a standard (unweighted) deformable model approach that does not utilise spatial
weights, i.e. with similar steps to figure 2, but with no partial fitting and all weights for all
objects are set to unity. The results for each approach is shown in table 1. A visualisation of
the proposed approach (presented as a movie) when applied to a case in the dataset is provided
as supplementary material.

The automatic prostate segmentations of the proposed method was found to have a
(mean DSC, median DSC, Hausdorff distance, median MASD) of (0.79, 0.81, 9.6± 2.9 mm,
2.0 ± 0.9 mm). The approximate maximum (large FOV, small FOV) time required for the
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Figure 3. The Dice’s similarity coefficient (DSC) box plot with respect to the resulting volume
of the proposed method per object.

entire prostate segmentation result to be obtained was (12 minutes, 3 minutes), leading to a
total maximum computation time of round 15 minutes. The individual DSC (as box plots) for
each case and their respective volumes for the proposed approach are shown in figure 3 for all
objects. The optimal spatial weights for initialising the subsequent object, while simultaneously
fitting the current object (such as those weights shown in figure 2), was found to be between
0.6-0.8 across all objects. Figure 4 shows the study of these spatial weights with respect to the
resulting DSC of the subsequent object for the different objects in this work. The DSCs for the
weights in figure 4 were computed using brute force on a subset of 12 cases by keeping the
targeted object fixed at maximum accuracy (i.e. a weight of 1.0).

To ensure that the actual error of the segmentations are reasonable for applications such
as treatment planning for EBRT, the MASD errors of the prostate, bone and rectum were
computed and are shown in figures 5 and 6. Following the work of Klein et al. 2008, figure 5
shows the overall prostate MASD errors across all cases as a Mollweide or homalographic
projection (Snyder 1987) (assuming a genus zero embedding of the prostate surfaces) to
highlight the problematic areas for the segmentation method.

4. Discussion

The validation of the proposed multi-object approach showed that the prostate segmentations
were of a similar DSC as the multi-atlas approach, showing no significant difference (p > 0.4),
and inter-rater scores as reported by Dowling et al. 2015 on the same data. Although similar
results are obtained, the computation times are vastly different between the two methods with
the entire proposed pipeline per case computation time being nearly an order of magnitude faster
(approximately 12-15 minutes) when compared to a (multi-threaded) multi-atlas approach
without cloud infrastructure (approximately taking 120 minutes in total). Figure 4 also showed
that the partial weights used for the simultaneous initialisation of the subsequent object is
important and that a weight in between 0.5-0.8 should suffice for most use cases.

The main locations of the prostate surface errors shown in figure 5 seem to relate to
the medial and lateral regions marked in light blue and green on the region labelling of
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(a) (b)

(c) (d)

Figure 4. The spatial weight values of the subsequent object while accurately segmenting the
current target object (weight of 1.0) as a function of resulting DSC. The stages of the pipeline
in figure 2 are shown as body to bone (a), bone to bladder (b), bladder to rectum (c) and rectum
to prostate (d).

figure 5(b). This appears to correspond to local minima due to other tendons and soft tissue
edges in proximity to the prostate that are similar to the prostate edges. Spatially constrained
segmentation, such as those presented in Martin, Troccaz and Daanen 2010 or a more sub-
focused model (per region in the prostate as opposed to just the multiple objects) to restrict
deformation in this region as a potential remedy for these errors.

There were four low performing cases with the proposed method. Three of these cases
were found to have had a transurethral prostate resection (TURP) in the past, which may
have led to unusual bladder-prostate interfaces in the small FOV T2 MR images (Hricak and
Carrington 1992). These appearances are shown in figure 7. Since the proposed method utilises
gray level models, these cases introduce errors for normal bladder-prostate appearances as they
essentially allow normal cases to fit sections of the prostate within the bladder. A possible
solution to these cases is to use a separate gray level model for TURP patients, since the patient
history is known for the training cases and the new case to be segmented. The remaining low
performing case had an unusual bladder interfaces in the large FOV to be discussed shortly,
leading to a sub-optimal initialisation for the small FOV image resulting in a low DSC.

There were no distinct advantages of the proposed method with respect to the (relatively)
rigid structures in the dataset, namely the body outline and bones, when compared to the
unweighted approach (as seen in table 1 and figure 4). The multi-atlas approach out-performed
the proposed method and unweighted method in both these two objects. The main reasons for
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Figure 5. Surface distance errors with respect to the manual segmentations of the automatic
prostate segmentation using the proposed multi-object approach. (a) and (b) shows the prostate
region labels. (c) and (d) show the mean and variance of the distance errors. The distances and
regions were parameterised from prostate shapes to corresponding spheres and mapped to 2D
using Mollweide projection (Snyder 1987).

Figure 6. Surface distance errors with respect to the manual segmentations of the (a) bone and
(b) rectum automatic segmentations (not to scale) using the proposed multi-object approach.
The areas in proximity to the prostate useful for tasks such as treatment planning for EBRT
have relatively small errors.

this discrepancies were found to be the FOV differences within the dataset and the template
surfaces. Although these surfaces were created to account as best as possible for these
differences, the average (or larger than average) consensus were used to generate the template
surfaces and thus the differences were still large. It is likely that larger and more accurate (in
terms of sampling) template surfaces could remedy this problem, though at a potential cost to
computation times. Methods for dealing with FOV differences have already been devised for
the bone and could also be incorporated, however with an increased computation time (Schmid,
Kim and Magnenat-Thalmann 2011; Chandra et al. 2014).
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(a) (b) (c)

Figure 7. A set of unusual bladdder-prostate interfaces present in the dataset who have had
a TURP. (a)-(c) each show the three cases that perform with low DSC as a slice of the small
FOV MR image with green contours outlining the manual segmentations of the prostate. Notice
the bladder like appearance within the prostate, which is problematic when using a gray level
model to fit deformable models in these cases.

The unweighted approach also performed as well as the proposed approach for the rigid
objects, namely the body and bone. This is because the objects are suitably discernible and
large enough to be segmented without much initialisation. It is possible that more centred
scans, where the bone is properly centred, the body outline segmentation step could be omitted
altogether without much loss in prostate segmentation accuracy in applications where dosimetry
is not needed. Herein also lies one limitation of the proposed approach; it is dependent on
having multiple objects that can be segmented automatically present in the dataset, some of
whom must be easily discernible for an accurate self-initialisation. The unweighted approach
however, does not perform well for more highly shape variable (non-rigid) objects such as the
bladder, rectum and prostate, achieving low DSC values as shown in table 1.

The low bone segmentation DSC of the proposed approach, when compared to the multi-
atlas method, could be due to the fact that the labels for the pelvis and femur are not separated.
This results in a deformable model that has low sensitivity in the joint area because it cannot
take into account the flexions of the joint. Chandra et al. (2014) have developed methods
to account for these issues by using large CT-based template surfaces with individual bone
components. This could also be added to improve bone segmentations, but again at the cost of
computation time, which would be of the order of 6-8 minutes just for the bone. Also note that
figure 6(a) shows that the surface distance errors for the bone segmentations are not that high
near the central pelvic area, an area of important in applications such as prostate EBRT.

The rectum segmentation DSC scores were slightly lower than the multi-atlas approach,
but surface distance analysis showed that the errors of the overall areas closest to the prostate
are small (around 2 mm, see figure 6(b)). This is acceptable for applications such prostate
EBRT treatment planning, where the prostate margins are specified to reduce rectal toxicity.
The greatest areas of disagreement between the automated and manual rectum results were
the sigmoid junction and inferior cut-off regions (see figure 6(b)), which was defined as the
end point for the manual segmentations based on the position of the prostate. Note that this
area was also subject to larger on average inter-observer variability. The disagreement was
likely because it is difficult to profile match for the partial fitting of a tube like structure such as
the rectum and where the “end” of the structure might be. A large and more complete rectum
surface that covers more of the anatomy would likely perform better.

To achieve the computation times of the proposed approach, the gray level models were
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Figure 8. Outlier in bladder appearance within the current dataset leading to low DSC scores
for the bladder and prostate.

restricted to subset of the training cases that were chosen by hand. A set of eight cases
were chosen to meet the general appearance of most cases. For the bladder however, two
particular cases had to be omitted due to highly irregular appearance as shown in figure 8.
The gray level model for this case could not account for the drastic difference in internal and
external intensity differences. Performance of the segmentation scheme could be improved by
(automatically) choosing a subset from a much larger training set of cases using methods such
as pre-clustering (Langerak et al. 2013). These cases were among the lowest DSC scores of
the proposed method.

Further work needs to be done in improving the accuracy and computation times of the
proposed approach. More analysis of the weights, especially at a sub-object level could lead to
a more accurate method. An automated method for selecting and clustering cases based on
object profiles for use in gray level models could result in improved accuracy and speed. A
recent method for improving the capacity of shape models to efficiently represent multi-object
shape using multi-resolution approach (Cerrolaza et al. 2015), as well as using graphical
processing unit (GPU) implementations, could also be useful in these endeavours.

Conclusion

This work presented a fast, self-initialised multi-object ASM approach using applied to pelvic
structures in 3D MR images. The self-initialisation is achieved via a hierarchical multi-object
pipeline controlled using spatially weighted shape learning to simultaneously fit the current
(more easily discernible) object and initialise the subsequent (more difficult) object. The
proposed method achieved the same segmentation accuracy for the prostate as a multi-atlas
approach, but with a computation time of nearly an order of magnitude faster (approximately
12-15 minutes compared to 120 minutes) of such an approach without cloud infrastructure (see
table 1 and figure 5). With recent enhancements for multi-resolution shape models, it should be
possible to engineer further improvements in performance of the proposed approach in terms
of computation time.

Acknowledgments

This work was supported by Cancer Council New South Wales research grant RG11-05, the
Prostate Cancer Foundation of Australia (Movember Young Investigator Grant YI2011) and
Cure Cancer Australia.



REFERENCES 13

References

Cerrolaza, Juan J., Mauricio Reyes, Ronald M. Summers, Miguel Ángel González-Ballester and Marius
George Linguraru (2015). “Automatic multi-resolution shape modeling of multi-organ structures”.
In: Medical Image Analysis 25.1, pp. 11–21. ISSN: 1361-8415. DOI: 10.1016/j.media.2015.
04.003.

Chandra, Shekhar S., Ying Xia, Craig Engstrom, Stuart Crozier, Raphael Schwarz and Jurgen Fripp (Apr.
2014). “Focused shape models for hip joint segmentation in 3D magnetic resonance images”. In:
Medical Image Analysis 18.3, pp. 567–578. ISSN: 1361-8415. DOI: 10.1016/j.media.2014.
02.002.

Chandra, S.S., J.A. Dowling, Kai-Kai Shen, P. Raniga, J.P.W. Pluim, P.B. Greer, O. Salvado and J. Fripp
(2012). “Patient Specific Prostate Segmentation in 3-D Magnetic Resonance Images”. In: Medical
Imaging, IEEE Transactions on 31.10, pp. 1955 –1964. ISSN: 0278-0062. DOI: 10.1109/TMI.
2012.2211377.

Cootes, T. F., C. J. Taylor, D. H. Cooper and J. Graham (1995). “Active Shape Models-Their Training
and Application”. In: Computer Vision and Image Understanding 61.1, pp. 38–59. ISSN: 1077-3142.
DOI: 10.1006/cviu.1995.1004.

Cosío, F. Arámbula (Aug. 2008). “Automatic initialization of an active shape model of the prostate”. In:
Medical Image Analysis 12.4, pp. 469–483. ISSN: 1361-8415. DOI: 16/j.media.2008.02.
001.

Datar, Manasi, Yaniv Gur, Beatriz Paniagua, Martin Styner and Ross Whitaker (2011). “Geometric
Correspondence for Ensembles of Nonregular Shapes”. In: Medical Image Computing and
Computer-Assisted Intervention - MICCAI 14.Pt 2, pp. 368–375.

Davies, R. H, C. J Twining, T. F Cootes and C. J Taylor (2010). “Building 3-D Statistical Shape Models
by Direct Optimization”. In: Medical Imaging, IEEE Transactions on 29.4, pp. 961–981. ISSN:
0278-0062. DOI: 10.1109/TMI.2009.2035048.

Davies, Rhodri H., Carole J. Twining and Chris Taylor (2008). “Groupwise surface correspondence by
optimization: Representation and regularization”. In: Medical Image Analysis 12.6, pp. 787–796.
ISSN: 1361-8415. DOI: DOI:10.1016/j.media.2008.03.009.

Dice, Lee R (1945). “Measures of the Amount of Ecologic Association Between Species”. In: Ecology
26.3, pp. 297–302. ISSN: 00129658.

Dowling, Jason A. et al. (2015). “Automatic substitute CT generation and contouring for MRI-alone
external beam radiation therapy from standard MRI sequences”. English. In: International Journal
of Radiation Oncology Biology Physics 93.5, pp. 1144–1153. ISSN: 0360-3016. DOI: 10.1016/j.
ijrobp.2015.08.045.

Ecabert, O., J. Peters, H. Schramm, C. Lorenz, J. Von Berg, M.J. Walker, M. Vembar, M.E. Olszewski,
K. Subramanyan, G. Lavi and J. Weese (2008). “Automatic Model-Based Segmentation of the Heart
in CT Images”. In: Medical Imaging, IEEE Transactions on 27.9, pp. 1189–1201. ISSN: 0278-0062.
DOI: 10.1109/TMI.2008.918330.

Engstrom, Craig M., Jurgen Fripp, Valer Jurcak, Duncan G. Walker, Olivier Salvado and Stuart Crozier
(June 2011). “Segmentation of the quadratus lumborum muscle using statistical shape modeling”.
en. In: Journal of Magnetic Resonance Imaging 33.6, pp. 1422–1429. ISSN: 1522-2586. DOI:
10.1002/jmri.22188.

Fripp, J., S. Crozier, S.K. Warfield and S. Ourselin (Jan. 2010). “Automatic Segmentation and Quantitative
Analysis of the Articular Cartilages from Magnetic Resonance Images of the Knee”. In: Medical
Imaging, IEEE Transactions on 29.1, pp. 55–64. DOI: 10.1109/TMI.2009.2024743.

Gao, Yi, Ron Kikinis, Sylvain Bouix, Martha Shenton and Allen Tannenbaum (Aug. 2012). “A 3D
interactive multi-object segmentation tool using local robust statistics driven active contours”. In:
Medical Image Analysis 16.6, pp. 1216–1227. ISSN: 1361-8415. DOI: 10.1016/j.media.
2012.06.002.

Garland, Michael and Paul S. Heckbert (1997). “Surface simplification using quadric error metrics”. In:
Special Interest Group on Computer Graphics and Ineractive Techniques (SIGGRAPH). New York,

http://dx.doi.org/10.1016/j.media.2015.04.003
http://dx.doi.org/10.1016/j.media.2015.04.003
http://dx.doi.org/10.1016/j.media.2014.02.002
http://dx.doi.org/10.1016/j.media.2014.02.002
http://dx.doi.org/10.1109/TMI.2012.2211377
http://dx.doi.org/10.1109/TMI.2012.2211377
http://dx.doi.org/10.1006/cviu.1995.1004
http://dx.doi.org/16/j.media.2008.02.001
http://dx.doi.org/16/j.media.2008.02.001
http://dx.doi.org/10.1109/TMI.2009.2035048
http://dx.doi.org/DOI: 10.1016/j.media.2008.03.009
http://dx.doi.org/10.1016/j.ijrobp.2015.08.045
http://dx.doi.org/10.1016/j.ijrobp.2015.08.045
http://dx.doi.org/10.1109/TMI.2008.918330
http://dx.doi.org/10.1002/jmri.22188
http://dx.doi.org/10.1109/TMI.2009.2024743
http://dx.doi.org/10.1016/j.media.2012.06.002
http://dx.doi.org/10.1016/j.media.2012.06.002


REFERENCES 14

NY, USA: ACM Press/Addison-Wesley Publishing Co., pp. 209–216. ISBN: 0-89791-896-7. DOI:
10.1145/258734.258849.

Ghose, Soumya, Arnau Oliver, Robert Martí, Xavier Lladó, Joan C. Vilanova, Jordi Freixenet, Jhimli
Mitra, Désiré Sidibé and Fabrice Meriaudeau (Oct. 2012). “A survey of prostate segmentation
methodologies in ultrasound, magnetic resonance and computed tomography images”. English. In:
Computer Methods and Programs in Biomedicine 108.1, pp. 262–287. ISSN: 0169-2607, 1872-7565.
DOI: 10.1016/j.cmpb.2012.04.006.

Glocker, Ben, Olivier Pauly, Ender Konukoglu and Antonio Criminisi (Oct. 2012). “Joint Classification-
Regression Forests for Spatially Structured Multi-object Segmentation”. en. In: Computer Vision âĂŞ
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